跟不上、读不完?上万篇顶会论文,这个工具一键分析
跟不上、读不完?上万篇顶会论文,这个工具一键分析一个研究者一天到底要读多少篇论文才能跟上最新趋势?在 AI 研究成果爆炸的今天,这个数字变得越来越模糊。人的阅读速度,早就跟不上 AI 科研地图扩展的速度了。
一个研究者一天到底要读多少篇论文才能跟上最新趋势?在 AI 研究成果爆炸的今天,这个数字变得越来越模糊。人的阅读速度,早就跟不上 AI 科研地图扩展的速度了。
在这个新访谈中,Sutton 与多位专家一起,进一步探讨 AI 研究领域存在的具体问题。
来自加拿大蒙特利尔三星先进技术研究所(SAIT)的高级 AI 研究员 Alexia Jolicoeur-Martineau 介绍了微型递归模型(TRM)。这个 TRM 有多离谱呢?一个仅包含 700 万个参数(比 HRM 还要小 4 倍)的网络,在某些最困难的推理基准测试中,
本文作者团队来自 Insta360 影石研究院及其合作高校。目前,Insta360 正在面向世界模型、多模态大模型、生成式模型等前沿方向招聘实习生与全职算法工程师,欢迎有志于前沿 AI 研究与落地的同
很多人相信,我们已经进入了所谓的「AI 下半场」,一个模型能力足够强大、应用理应爆发的时代。然而,对于这个时代真正缺少的东西,不同的人有不同的侧重,比如(前)OpenAI 研究者姚顺雨强调了评估的重要性,著名数学家陶哲轩则指出必须降低成本才能实现规模化应用。
扩散语言模型(DLMs)是超强的数据学习者。 token 危机终于要不存在了吗? 近日,新加坡国立大学 AI 研究者 Jinjie Ni 及其团队向着解决 token 危机迈出了关键一步。
在这场赛中,Meta 刚刚打出了一记最具冲击力的“王炸”——为年仅 24 岁的 AI 研究员 Matt Deitke,开出高达 2.5 亿美元的薪酬包,刷新行业纪录。
Meta 联合创始人兼首席执行官马克・扎克伯格从 OpenAI、谷歌和苹果等公司挖走了众多顶尖 AI 研究人员,并开出了数亿美元的薪酬,此举震惊了整个科技行业。现在,他正在更多地分享他对超级智能的愿景。
在三个月前,OpenAI 研究员 Shunyu Yao 发表了一篇关于 AI 的下半场的博客引起了广泛讨论。他在博客中指出,AI 研究正在从 “能不能做” 转向 “学得是否有效”,传统的基准测试已经难以衡量 AI 的实际效用,他指出现有的评估方式中,模型被要求独立完成每个任务,然后取平均得分。这种方式忽略了任务之间的连贯性,无法评估模型长期适应能力和更类人的动态学习能力。
「停止研究 RL 吧,研究者更应该将精力投入到产品开发中,真正推动人工智能大规模发展的关键技术是互联网,而不是像 Transformer 这样的模型架构。」